Adaptable hydrogel networks with reversible linkages for tissue engineering.
نویسندگان
چکیده
Adaptable hydrogels have recently emerged as a promising platform for three-dimensional (3D) cell encapsulation and culture. In conventional, covalently crosslinked hydrogels, degradation is typically required to allow complex cellular functions to occur, leading to bulk material degradation. In contrast, adaptable hydrogels are formed by reversible crosslinks. Through breaking and re-formation of the reversible linkages, adaptable hydrogels can be locally modified to permit complex cellular functions while maintaining their long-term integrity. In addition, these adaptable materials can have biomimetic viscoelastic properties that make them well suited for several biotechnology and medical applications. In this review, an overview of adaptable-hydrogel design considerations and linkage selections is presented, with a focus on various cell-compatible crosslinking mechanisms that can be exploited to form adaptable hydrogels for tissue engineering.
منابع مشابه
Reinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering
The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...
متن کاملReinforcement of a decellularized extracellular matrix-derived hydrogel using nanofibers for cardiac tissue engineering
The role of heart disease in increasing worldwide death and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate functional and implantable constructs. One of these strategies is to develop a biologically similar heart tissue scaffold, in which two types of fiber and hydrogel are commonly used. Toward this goal, taking advantage of both hydroge...
متن کاملReversible hydrogels from self-assembling genetically engineered protein block copolymers.
A series of triblock protein copolymers composed of a central water-soluble polyelectrolyte segment flanked by two coiled-coil domains was synthesized by genetic engineering methods. The copolymers self-assembled into reversible hydrogels in response to changes in temperature, pH, and the presence or absence of denaturating agent (guanidine hydrochloride, GdnHCl). Hydrogel formation was concent...
متن کاملHIGHLIGHT Dendritic Macromers for Hydrogel Formation: Tailored Materials for Ophthalmic, Orthopedic, and Biotech Applications
Dendritic macromolecules are well-defined highly branched macromolecules synthesized via a divergent or convergent approach. A salient feature of the macromolecules described herein, and a goal of our research effort, is to prepare dendritic macromolecules suitable for in vitro and in vivo use by focusing on biocompatible building blocks and biodegradable linkages. These dendritic macromolecule...
متن کاملSynthesis, Structure and Optical Characterization of Gelatin Hydrogel for Skin Tissue Engineering
This article has no abstract.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Advanced materials
دوره 27 25 شماره
صفحات -
تاریخ انتشار 2015